

Integrated Research and

Session-3

Theme Presentation

Strategy for Transforming South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Market in south Asia Region

Presented by-Vinod Kumar Agrawal (Technical Director), SARI/EI/IRADe & Rajiv Ratna Panda, (Technical Head), SARI/EI/IRADe

Conference on "Regional Energy Integration and Cross Border Energy Trade: A New Renaissance for Growth and Development of South Asia Region" 19thFebruary 2020, Hotel The Imperial, New Delhi, India

Contents

- Prevailing volumes of Electricity Trades amongst SACs
- Benefits towards going-in for Trilateral/Multilateral Trades
- Enablers towards Trilateral/ Multilateral Trades
- Issues requiring focussed attention
- Case study on trilateral and Multilateral Power Trade
- key takeaways
- Discussion Points-Transition from Bilateral to Trilateral/Multilateral Trades

Power Trading Volume amongst SA Countries_ (G to G & Market)

Country	Capacity (MW)	Туре	Trader	Tenure (Years)
Bhutan- India	2236	G-G	ΡΤΟ	35
	126	Market	TPTCL	25
India - Bangladesh	450	G-G	NVVNL	5/25
	790	Market	PTC, NVVNL, Sembcorp	2/3/15
India - Nepal	237	G-G	Bihar/UP state	Long Term Contract
	280	Market	PTC, NVVN	Renewed Every year

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Trade And Power

Traded Electrical Energy Volume (MUs) amongst SA Countries_ Last 5 Years

Year	India - Bangladesh	Bhutan - India	India - Nepal	Total
14-15	3271	5109	997	9377
15-16	3654	5557	1469	10680
16-17	4419	5863	2021	12303
17-18	4808	5611	2388	12807
18-19	5690	4657	2798	13145
19-20 (8months)	5600	5856	1354	12810

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Market in the South Asia Region Mr. V. K Agrawal, Technical Director /SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Head /SARI/EI/IRADE

5

Y to Y Enhancement of the Traded Energy Volume (MUs) amongst SA Countries

Total

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Market in the South Asia Region Mr. V. K Agrawal, Technical Director /SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Head /SARI/EI/IRADE

Benefits towards going for Trilateral/ Multilateral Trading

- The shortages in one country's power grid can be readily solved by imports from a country without common borders;
- Costlier power in certain countries can be replaced by cheaper power in the other countries;
- Countries can rely on market to provide reserve generation capacity, lowering their own investment costs;
- Fossil fuel-based generation in some countries can be replaced with cleaner hydropower from other countries;
- Curtailment towards the overall carbon footprint in the region;
- Overall regional costs can be brought down by source optimisation and economy of scales;

Trilateral/ Multilateral Trading _ Regulatory Enablers

- Permissibility towards use of electricity transmission network under open access;
- Norms towards identification of transmission capabilities and congestion;
- Provision of markets and common open access norms in different countries;
- Participation by more number of power generation and distribution companies;
- Accepted policies and norms towards measurement of deviations and settlements;
- Harmonised policies and norms for accounting and settlement;
- Avenues towards including Renewable power in trades;

Trilateral/ Multilateral Trading _Non Regulatory Enablers

Issues requiring focussed attention while going for Trilateral/Multilateral Power Trade

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Market in the South Asia Region Mr. V. K Agrawal, Technical Director /SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Head /SARI/EI/IRAD

Typical Multilateral Trading Scenario_ BBINS Region

1A. Deviations in actual flow _ Treatment under Typical Bilateral Transaction

Settlement of deviations in case of bilateral transaction is relatively simple and straight

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Trade and Development of Competitive Regional Power Trade and Multilateral Power Trade and SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Head /SARI/EI/IRADE

SARI/EI

1B. Deviations at different Seams _ Treatment under Multilateral Trade

Deviations at all the seams with the intervening country will have to be identified

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Trade and Development of Competitive Regional Power Trade and Multilateral Power Trade and SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Head /SARI/EI/IRADE

1C. Deviations at different Seams _ Treatment under Multilateral Trade

Critical points related to settlement of deviations in case of Multilateral Transactions :

- ✓ The nature of contract and rates for the two transactions may be different;
- ✓ There may be no co-relation between the contract rates vis a vis the rates prevailing in the intervening country;
- The rates in the intervening country may vary from time to time and at times may even become negative;
- ✓ At no stage the intervening country may like to get exposed to any financial loss;
- There also has to be an agreed financial instrument to ensure dispute free and timely settlement;

Country A1 Exporting Country ntervening Country

Pre-conceived philosophy is important to compute the deviations at different seams

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral and Multilateral Power Trade and Development of Competitive Regional Power Market in the South Asia Region Mr. V. K Agrawal, Technical Director /SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Head /SARI/EI/IRADE

SARI/EI

2A. Computation of Transfer Capability_ Treatment under Bilateral Transaction

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Market in the South Asia Region Mr. V. K Agrawal, Technical Director /SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Head /SARI/EI/IRAD

2B. Computation of Transfer Capability_ Treatment under Multilateral Transaction

Integrated study of the Regional Grid would be important to compute the ATC

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Trade and Development of Competitive Regional Power Trade and Multilateral Power Trade and Development of Competitive Regional Power Trade and SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Head /SARI/EI/IRADE

Accounting for Loss, Transmission and Operating Charges_ Multilateral Trade

Strategy for losses, trans. charges & op. charges for intervening country?

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Trade and Development of Competitive Regional Power Trade and Multilateral Power Trade and Development of Competitive Regional Power Trade and Development

Case Study on trilateral and Multilateral Power Trade

Power system and Market Integration evolution across the Globe

SA CBET Future Outlook-:-Moving from Bilateral to Tri/Multilateral and Market Integration

" Transiting from Bilateral to Trilateral/Multilateral Power Trade in South Asia- Models of Trilateral and Multilateral Power Trade "Workshop on Deepening Regional Energy Cooperation, CBET& Clean Energy Development in SA,15th January 2020, Sri Lanka by Rajiv Ratna Panda, Technical-Head /SAIC mylidemtial © 2017

Power System and Market Integration-International Experiences

Bilateral, unidirectional power trade

Bilateral, bidirectional power trade

Multilateral, multidirectional trade among differentiated markets

Multilateral, multidirectional trade among harmonised markets

Unified (pooled) market structure,

differentiated operations

Unified market and operations

• Thailand imports from Lao PDR. Bangladesh –India **Power Trade**

• China imports from Myanmar

• Malaysia–Singapore (non-financial). USA \leftrightarrow Baia California, Mexico

• Nepal-India , India-Bhutan

• Southern African Power Pool (SAPP) • SIEPAC (Central America)

European Union Internal Energy Market

Nord Pool

PJM

Harmonization

Interconnected , Interdependent but retain their independence

Intra day

Ahead

Day

Real time

Ancillar

Complete

Integration,

Uniform and

Single

System

Reference - IEA (2019), "Integrating Power Systems across Borders", IEA, Paris, www.iea.org/publications/reports/integratingpowersystemsac IEA (2019), "Establishing multilateral power trade in ASEAN", IEA, Paris, www.iea.org/publications/reports/EstablishingmultilateralpowertradeinASEAN/

Why Lao PDR, Thailand, Malaysia, Singapore (LTMS) Trade Project

Why Lao PDR, Thailand, Malaysia, Singapore (LTMS) Trade Project ?

Both South Asian and ASEAN Region have many similarities

- Similar Socio-Economic Conditions, Developing Country Context
- SAARC Existing Cross Border Trade ~ 3536 MW (All Bilateral)
- SAARC-Steps are being taken to move from
 Bilateral to Multilateral (Trilateral Trade:- Bhutan-India-Bangladesh , Nepal -India-Bangladesh)
- SAARC-Power Market Structure: Except India all other SA countries have Single Buyer Model. In India-Competitive power market & power exchange exist (Wholesale Competition)

- Ten Countries, 634 Million People, 9% of world's population;
- Similar Socio-Economic Conditions, Developing Country Context
- ASEAN –Existing Cross Border Trade ~5502 MW (Mainly Bilateral)
- ASEAN- After Long years of Bilateral Trade , Recently Steps have been taken to move from Bilateral to Multilateral (Lao PDR-Thailand-Malaysia-Singapore -A path breaking Project).
- ASEAN Power Market Structure: Except Singapore, Philippines, Vietnam all other ASEAN countries have Single Buyer Model. In Singapore (Wholesale), Philippines (Wholesale and Retail) Vietnam –Cost Pool.

Why Lao PDR, Thailand, Malaysia, Singapore (LTMS) Trade Project ?

"Transiting from Bilateral to Trilateral/Multilateral Power Trade in South Asia- Models of Trilateral and Multilateral Power Trade "Workshop on Deepening Regional Energy Development in SA.15th January 2020. Sri Lanka by Raiiy Ratna Panda, Technical-Head /SARI/EI/IRADE

Lao PDR, Thailand, Malaysia, Singapore (LTMS) Trade Project

- 1st multilateral power trade: LAO PDR (cheap hydro power) to Singapore/Malaysia via Thailand & Malaysia to support ASEAN Power Grid. Idea came up in 2014.
- □ The project is being be implemented in 2 phases
 - Phase 1- 2018-2019 (LTM-PIP)
 - Power Trade of up to 100MW btw. Lao PDR & Malaysia via Thailand only utilizing existing network & interconnections. Later up to 300 MW
 - □ Phase 2- 2020 or beyond (LTMS-PIP)
 - Possible expansion to include Singapore when second interconnection cable btw. Singapore & Malaysia is back in service.
 - Singapore-fully liberalised power market. Exporting country will need to establish a local subsidiary to sell electricity directly in Singapore's market.

SEPTEMBER 2016

LTMS–PIP Working Group, Deep Commitment and Formal Mechanisms

- **Tax and tariff aspects of the project**

As a first step, each country developed a grid study- to confirm technically possible -100 MW trade from Lao PDR to Singapore

Ownership and Fairness - Each country led a Particular Task Force

LTMS Project: Deep Political Commitment and Strict Timeline

Theme presentation for session-2 Strategy for Transitioning South Asia from Bilateral to Trilateral and Multilateral Power Trade and Development of Competitive Regional Power Market in the South Asia Region Mr. V. K Agrawal, Technical Director /SARI/EI/IRADE and Rajiv Ratna Panda, Technical-Hea Confidential 2017

LTMS Project: Wheeling Charge Methodology

Wheeling charge comprised of a) transmission- the distance of the trade (megawatts mile); b) loss charge-a loss charge (charged per megawatt hour); c) balancing charge (also per megawatt hour); and d) administrative charges- a fixed administrative charge.

¹ Source: Establishing Multilateral Power Trade in ASEAN, IEA, August 2019 (page 48)

Reference - IEA (2019), "Integrating Power Systems across Borders ", IEA, Paris, <u>www.iea.org/publications/reports/integratingpowersystemsacrossborders/</u> Source: Lao PDR – Thailand – Malaysia – Singapore on Power Integration Project (LTMS-PIP) related various sources, <u>web link</u> <u>web link</u> <u>web link</u> <u>web link</u>

Current Commercial Arrangement (Phase-1)

* Signed between ElectriciteDu Laos (EDL), Electricity Generating Authority of Thailand (EGAT) and Tenaga Nasional Berhad(TNB)

bilateral PPA1.

۲

Key takeaways form LTMS PIP Project

LTMS Project: Key takeaways form LTMS PIP Project for SA

- **Can start with existing infrastructure with small level of trilateral trade as a pilot case. Builds Confidence**
- **Political support** is essential.
- □ Marrying of Overall Economics and Political interests Objective of achieving Better Regional Integration across ASEAN across sectors.
- Critical Roll Played by Intergovernmental Mechanisms- ASEAN Ministers on Energy Meeting (AMEM), Senior Officials Meeting on Energy (SOME).
- Dividing work across the participating countries giving everyone has a stake in, and a sense of ownership.
- A country to be actively involved in development process even if it does not take part in trading arrangement initially (Singapore).
- A small country like LAO PDR can succeed in accessing far distance markets.
- **Time bound (**with 3 years from LMTS PIP WG ,trade started) and Negotiations and agreement on Wheeling charge Methodology.
- **TNB** is under no obligation to purchase any minimum amount of energy from EDL*.
- □ Initial Success of trilateral trade accelerate trade Decided to increase the power trade (100 mw to 300 mw).

Minimum Requirement for Trilateral/Multilateral

- Strong Political will
- Intergovernmental agreement(s)
- Regional Outlook/Vision.
- Structured Intergovernmental Political Forum
- No legal and Regulatory Obstacle- Minimum to have Access to Third Party Network.
- Some Forum for Regulators for Discussion.
- Common Understanding on dealing with Regulatory Aspects

- Harmonised technical standards (grid codes) or agreed norms
- Harmonised wheeling charge methodology or agreed methodology .
- Co-ordinated Grid Planning
- Data & information sharing
- Interconnector capacity availability calculation, deviation settlement, loss accounting

• Institutional arrangements

- Imbalance Settlement and payment mechanism
- Dispute resolution mechanism
- Regional Forums

Political

Technical and Commercial

Institutional

* https://www.thestar.com.my/business/business-news/2017/09/27/tnb-enters-into-aseans-first-multilateral-energy-pact

Discussion Points _ Transition from Bilateral to Trilateral/Multilateral Trades

Learning from examples of Regional Integration having multilateral trades ?

How the different countries in SA are going to be benefited with multilateral trades ?

Specific advantages trilateral/multilateral trades bring over bilateral trades, particularly towards accelerating regional power market ?

How the transmission capacity in the intervening country can be channelized under multilateral trades ?

What kind of socio economic impact this transition can bring ?

With multilateral trades what are the specific challenges in respect of accounting and settlement?

Thank You

3ilateral to Trilateral/Multilateral Power Trade in South Asia- Models of Trilateral and Multilateral Power Trade "Workshop on Deepening Regional Energy Cooperation, CBET& Clean Energy Coope

۲

LTMS - Existing Interconnection & Physical Flow-2018*

Models of the Trilateral/Multilateral Trade and

Power flow control through interconnections:

- Between Lao PDR and Thailand: without power flow control (without ACE)
- Between Thailand and Malaysia: controlled by pole control of HVDC
- Between Malaysia and Singapore: AGC setting of Area Control Error (ACE)
- Source: Lao PDR Thailand Malaysia Singapore on Power Integration Project (LTMS-PIP) related various sources , web link weblink web link web link

- Lao-Thailand: TNL and PHT to NK, Paxan-BKN, Thakhek-NN, Pakbo-MD2, Bangyo-SRD all are 115 kV Thailand – Malaysia: KNE-Gurun 300 kV 300 MW HVDC Between Malaysia – Singapore: Plentong-Senoko 275 kV HVAC
- 2. Thailand–Malaysia is a <u>monopolar</u> 300 kV overhead line with a maximum transmission rate of 300 MW
- **3.** * Malaysia-Singapore only after 2020, This slide indicates the whole LTMS project as Planned including M-S connection. There is no flow between M-S in 2018

LTMS - Existing Interconnection & Physical Flow-2019*

Power flow control through interconnections:

- Between Lao PDR and Thailand: without power flow control (without ACE)
- Between Thailand and Malaysia: controlled by pole control of HVDC
- Between Malaysia and Singapore: AGC setting of Area Control Error (ACE)
- Lao-Thailand: TNL and PHT to NK, Paxan-BKN, Thakhek-NN, Pakbo-MD2, Bangyo-SRD all are 115 kV Thailand – Malaysia: KNE-Gurun 300 kV 300 MW HVDC Between Malaysia – Singapore: Plentong-Senoko 275 kV HVAC
- 2. Thailand–Malaysia is a <u>monopolar</u> 300 kV overhead line with a maximum transmission rate of 300 MW
- **3.** * Malaysia-Singapore only after 2020, This slide indicates the whole LTMS project as Planned including *M*-S connection. There is no flow between *M*-S in 2019

Models of the Trilateral/Multilateral Trade and case study of Lao PDR, Thailand, Malaysia, Singapore (LTMS) Trade Project Rajiv Ratna Panda, Technical-Head /SARI/EI/IRADE