Day 2

- Key concepts of HVDC substation components
Technical Considerations

- **Bulk transmission of Power at voltages up to 800kV**

- **Back-to-back HVDC converters are used to connect two AC systems with different frequencies –two regions where AC is not synchronized**

- **Submarine Cable Transmission**

- **Transmission at reduced voltage**

- **Inherent Overload Capability**
FUNDAMENTAL OF HVDC OPERATION

- Power Transmission Solutions
- Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka

Diagram showing the fundamental operation of HVDC systems with voltage, current, and resistance values.
HVDC Long Distance Transmission Systems

- **Monopolar**
 - Transmission Line
 - Terminal A
 - Terminal B

- **Bipolar**
 - Pole 1
 - Pole 2
 - Transmission Line
 - Terminal A
 - Terminal B
HVDC Cable Transmission Systems

- **HVDC Classic Bipole**
 - Terminal A
 - Transmission Cable
 - Pole 1
 - Pole 2
 - Terminal B

- **HVDC PLUS Symmetrical Monopole**
 - Terminal A
 - Transmission Cable
 - Pole 1
 - Pole 2
 - Terminal B

Cable Systems
- Submarine Cable Systems
- Land Cable Systems
COMMUNICATION

- Highly reliable and effective telecommunication system should be available between the terminals.

- Telecommunication link can be either PLCC or OPGW.

- Optical Ground Wire (OPGW) can be installed on one of the peaks of the HVDC line.

![Diagram showing communication setup between Terminal 1 and Terminal 2 with OPGW connection between R1, R2, and Rn.]

\(n \) : depends on the Mux power and distance between the HVDC terminals
Basic Design Process

Specification

- Main transmission Data
 - P_{dc}
 - U_{dc}
 - I_{dc}
 - etc.

- Main data of converter station (U, I, a, Q)

- Design data for all equipment of the HVDC-system

AC-Network
- Load flow study
- Stability study

Computer
- Simulation study

DC-Harmonics

AC-Harmonics

Insulation coordination and arresters

Thyristor valves

Smoothing reactor

DC-Filters

DC-Line

AC-Filters

Converter transformer
Basic HVDC Single Line Diagram

- Thyristor Valves
- Converter Transformer
- Smoothing Reactor
- DC OH Line
- DC Filter: DT 12/24, DT 12/36
- Thyristor Valves
- Converter Transformer
- Smoothing Reactor
- DC OH Line
- AC Filters, Reactors
- 400 kV AC Bus
- AC Filters
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka

Isometric view – Conventional Bipolar HVDC
Key Components of HVDC
Bipolar HVDC Terminal

1. AC Switchyard
2. AC Filters
3. Transformers
4. Converter Valves
5. Smoothing Reactors and DC Filters
6. DC Switchyard
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) -
Executive Exchange Dhaka

Main Equipments

- Thyristor Valves
- Valve Cooling
- Converter Transformer
- Smoothing Reactor
- DC Switches
- AC Filters
- DC Filters
- PLC Filter
- Ground Electrode
- Control and Protection
Thyristor Valves

- The rectification and inversion process is carried out by the Thyristor valves

- Housed inside the valve halls
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka

Thyristors

- Thyristor Technology with direct Light-Triggered Thyristors
- Rated Voltage up to 800 kV
- Rated Current more than 3,000 A
- Free from Oil and exclusive Use of Flame-retardant self-extinguishing Materials ⇒ Reduced Fire-Hazard
- Efficient and Corrosion-free Water Cooling
- Excellent Seismic Performance
Direct Light Triggered Thyristor LTT

High Reliability

- 80% less Electronic Components
- Direct Laser Light-triggered Thyristor
- Thyristor Blocking Voltage: 8 kV
- Thyristor Wafers:
 - 4" for currents up to 2,200 A
 - 5" for currents up to 3,700 A
HVDC Station Design and Equipment: Thyristor Valves – Light Transmission from Ground to Thyristors

VBE: Valve Base Electronics
MSC: Multimode Star Coupler
LG: Light Guide

up to 100 m
HVDC Thyristor Valves – Principle Circuit of a 12-Pulse Group

Valve Tower Arrangement

12-Pulse Group

Multiple Valve Unit (Quadruple Valve)

Valve Arm

Neutral

to DC Line: + or -

Example 500 kV
Parallel Water Cooling

The Siemens employs Parallel-Water Cooling which has been in operation for more than 30 years.

- It provides all thyristors with the same cooling water temperature.
- Electrolytic currents are minimized by the use of grading electrodes.
- Careful choice of materials allows operation without de-oxygenizing equipment.
- None of these systems had corrosion problems.

a Thyristor
b Heat Sink
c Piping
d Manifold
Thyristor Valves in Pre Fabricated Building
Simplified Cooling Circuit

DI: Deionising
EXP: Expansion Vessel

Optional for colder environments
Air Blast Cooler

Spray of Soft water foreseen for ambient conditions in excess of 45 deg C
Valve Hall-External View
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) -
Executive Exchange Dhaka

Talcher Kolar, India
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka

PEB Valve Hall
Converter Transformer

- Provide the AC voltage for the converter
- Subject to DC voltage and currents on the Valve side.
- Can be two winding or three winding depending on MVA rating and size unit weight of transportation is an important consideration
- Subject to special tests such as DC withstand, polarity reversal and heat run test with harmonic currents taken into account
Winding Arrangement

Core

R - Regulating Wdg
L - Line Wdg
V - Valve Wdg
Winding arrangement

Core

R-Regulating Wdg
L-Line Wdg
V-Valve Wdg
Converter Transformer
Converter Transformer
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka

Smoothing Reactor

- Removes ripples from DC voltage
- Limits rate of rise of current in case of DC line faults
- Limits higher order harmonics in DC line
- Limits possible resonance at fundamental and 2nd harmonic frequencies
HVDC Smoothing Reactor

Oil immersed Design

- 270 mH
- 500 kV DC
- 3,000 A

Air-Core Design

- 150 mH
- 500 kV DC
- 1,800 A

Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka
High Speed DC Switches

Switches to commutate direct current (MRTB, MRS, HSNBS, HSGS)

Metallic Return Transfer Breaker (MRTB) and Metallic Return Switch (MRS)

Use of standard SF$_6$ circuit breakers
HVDC Basic Design – Filter Configurations

- **AC-Filter Type 1**
 - Single Tuned (ST)

- **AC-Filter Type 2**
 - Double Tuned (DT)

- **AC-Filter Type 3**
 - Triple Tuned (TT)
HVDC Basic Design: Examples of AC Filters

Shenzhen Converter Station (500 kV, 3000 MW) – HVDC LDT Guizhou-Guangdong II, China
AC and DC Yard – The Protection Zones

- 1 AC-Busbar Protection
- 2 AC-Line Protection
- 3 AC-Filter Protection
- 4 Converter Transformer Protection
- 5 Converter Protection
- 6 DC-Busbar Protection
- 7 DC-Filter Protection
- 8 Electrode Line Protection
- 9 DC-Line Protection
HVDC Control and Protection: Win-TDC * System Hierarchy

Operator Control Level
SIMATIC WinCC

Control and Protection Level
SIMATIC TDC

Field Level
I/O Unit

HMI: Human Machine Interface
LAN: 100 Mbit/sec
Field Bus: FO, Profibus DP

* SIMATIC WinCC and SIMATIC TDC
Decentralized Control and Protection System for Bipole Long-Distance Transmission

Control and Protection Hierarchy, one Station

Most of the Equipment is redundant (for Simplification not shown in the Figure)

SER: Sequence of Events Recording System
TFR: Transient Fault Recording System
Operator’s AC and DC-Control Room:
Example of TIAN GUANG HVDC Project
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka

Operator’s Control & Screen Layout:
Configuration for Bipole Long-Distance Transmission
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka

SIMATIC WinCC and SIMATIC TDC
Win-TDC Control Software – Programming Language CFC
(Continuous Function Chart)

- One programming Language for all Control and Protection Functions
- Over 300 tested and well proven Standard Function Blocks
- Fully graphically configurable – easy for Engineering
HVDC Basic Design: Arrester Arrangement

AC-Filter Bus

AC-Filter

L1

C1

Fac_{hv}

L2

Fac_{lv}

C2

AC-Bus

Arr A

Arr B1

Arr B2

Arr B3

Arr B4

Arr C

Arr E1

Arr E2

Arr D

DC Line

L_{smooth}

F_{dc}

Neutral

1

2

3

4

5

6

7

8

9

10

11
TYPICAL LAYOUT OF ELECTRODE STATION
Ground Electrodes Effects

- Local Effects (Up to < 1 km)
- Safety of Humans and Animals
- High temperature rise of Ground and drying of soil.
- Remote Effects (may be up to 50 Km and beyond)
- Potential rise can cause DC current flow in transformer Neutrals
- Corrosion of buried metallic objects.
Design Requirements

Local Electrode parameters.

- Ground Electrode resistance $\leq 0.3 \ \Omega$
- Touch Voltage $\leq 40 \ \text{Volts}$
- Step Voltage $\leq 6 \ \text{Volts}$
- Current Density $\leq 0.5 \ \text{A/m2}$
- Temperature on the surface of sub-electrode: $\leq 100 \ ^\circ \text{C}$.

Remote Effects.

The Ground potential rise and electric field shall decay fast and shall be negligible (few Volts) within 15-20 kms of electrode site.
Auxiliary and Other Systems* - HVDC

- Auxiliary Power
- LT Power System
- DG Set
- DC Power/UPS
- Air Conditioning/Ventilation
- Fire Detection / Fighting
- Illumination
- PA System
- Valve Cooling System
- Oil Filtration System
- Service Water
- Telephone & PA System
- CCTVs, Maintenance equipment
- Tools and Tackles
- O&M Equipment

* Typical; subject to specification of individual contract9
Auxiliary Power Sources

- Usually two 33kV/11kV sources
- DG Set connected on LT bus
- Voltage Variation: ±10%
- Frequency Variation: ±5%
Cross Border Electricity Transmission with High Voltage Direct Current (HVDC) - Executive Exchange Dhaka

Typical Aux Power Scheme for HVDC Station

FROM ICT1, 400/132/33kV,200MVA TRF TERTIARY;
FROM ICT2, 400/132/33kV,200MVA TRF TERTIARY;
Valve Hall Ventilation Requirements*

- Inside DB temperature 50°C±2°C
- Inside R.H. 43% ±5%
- Clean room to ISO class 7 as per ISO 14644-1:1999
- Positive pressure – 3mm of water column
- Dedicated one running and one standby AHU
- Supply air through high efficiency filters to main desired clean room condition

Typical; subject to specification of individual contract
Fire Protection - Choice of Material

- Fire Protection Walls
 - Dry Composite Transformer Wall Bushing
 - Minimised Inflammable Materials
 - Dry Composite Wall Bushing

Typical; subject to specification of individual contract
Fire Protection – Valve Hall & Transformers

- Buchholz Relays
- VESDA* Detectors
- Air Sampling Tubes
- Ultra Violet Detectors
- Infra Red Sensors

* Very Early Warning Aspirating Smoke Detection

Typical; subject to specification of individual contract
Fire Protection - Control Rooms

- Optical Smoke Detectors
- Ionisation Smoke Detectors
- Fire Protection Walls
- CO₂ Fire Fighting

* Typical; subject to specification of individual contract9
Fire Protection - Deluge System

Selective Initiator of Transformer and Valve fire fighting

Deluge System

Hydrant System (if required)

* Typical; subject to specification of individual contract
Thank you for your attention please!